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1. INTRODUCTION

In his pioneering paper [3], Favard considers the problem of minimizing
/11.) over

F:= {fE IL~) I/(ti ) =fo(t;), i = 1, ... ,11 + k},

for a given.fo and a given strictly increasing sequence t = (tiK i ". Favard
solves this problem in a rather ingenious way which is detailed and elaborated
upon in [2]. Favard goes on to prove that, with

[ti ,... , tiikJfo

denoting the kth divided difference offo on the points t i , ... , ti+k ,

K(k) := sup inff!1 fl.) 1100 IfE ~i;'), /(t,) = fo(t i ) ,

fo.t max k. I[ti ,... , ti+klfo 1
I

all

is finite, and that K(l) = 1, K(2) =cc 2. For k > 2. Favard gives no quanti
tative information about K(k).

An estimate for the supremum under the additional restriction that only
uniform t be considered can be found in Jerome and Schumaker [5]. Their
argument was extended by Golomb [4] as far as it will go, viz., to include
nonuniform t's whose global mesh ratio Rt :== maXi Llti/mini LIt; is bounded.

It is the purpose of the present paper to show how Favard's argument
can be used to obtain upper bounds for K(k). Further, an upper bound for
K(k) is also obtained by a completely different method which, incidentally,
also provides a simple proof of a theorem concerning the existence of

* Supported by the United States Army under Contract DA-31-124-ARO-D-462.
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HI"!'-extensions. thereby simplifying and extending three theorems of
Golomb [4]. A lower bound for K(k) is also given.

The author's interest in the numbers K(k) was sparked by a question about
them from 1-1.-0. Kreiss. who apparently was looking for a shortcut in
computing error bounds for a giveniinite difference approximation to the
solution of an ordinary difTerential equation. A bound 011 K(k) allows to
bound the kth derivative (and therefore all lower derivatives) of some smooth
interpolant I to given data fUd.···.f(r" I ) in terms of the computable
absolutely biggest kth divided difTerence \\'irho/lt actually constructing and
then bounding such an interpolant and its derivatives.

2. FAVARD'S ARGUMENI

Favard's argument consists in showing that, with Pi the polynomial of
degree k which agrees with f;, at I, ..... 'i I J. , a function I in F could be
constructed by blending PI ..... fin together without increasing the kth
derivative too much. Because of some practical interest for small k. we
describe Favard's construction in some detail.

Fumrd's Construction

Given k
function I, .

2. the strictly increasing sequence t (t i );' /, and the

Step I. For i I, , 11. form fJ,: the polynomial of degree _k
which agrees with f;, at t i , , t i" t, • and set I: PI. i : I. j( 1) :~C O.

Step 2. At this
agrees with Pi on t
continue.

point. f is in
t i(,)-cl . If i

;,J. agrees with /;) at t 1 , .... rl ,. and
n. stop. Otherwise, increase i by i and

Step 3.
among the
(t t/)'''(1

Step 4.

Piekj: j(i) so thatj . jU I) and /: (tJ , t'1) is a largest
k I intervals (I,. t, 11 ) .... , (I'i k- 2. t, i,l) and set lJ;Jt):

t, +1, I)'

On I, add to f the function

with

liJt) :C~ eXi rt

(t - S)',-lgi(S) dl'/(k -- I)!
,,·t

j

(1)
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and gi the piecewise constant function with jumps only at t, + (rlk) Llt"
r I, ... , k - 1, for which

r == 0.... , k - I (2)

Step 5. At this point, 1'r)(t)~ 1) = pjfl(t'H)' r 0, ... , k- 1. On
t jH , redefine f to equal Pi , and go to Step 2.

For k = 2. this construction is particularly simple since then. for
i== 2.... , /1,

j(i) == ;,

and, in terms of the piecewise constant

( ) ._ jL, t i <: t
gi t .-

f R, t i l/ 2

(1) and (2) become

t i : 1/~

t i-il '

1 ((Llt.)2 ) I(Llt)2-:2 T - (Llt,)2 L -;- 2 2-'- Rcc lj;,(tiH) (= 0).

Hence L = -I, R= 3. independently of i. Therefore. on (ti , t'II),

1 \ 3 (2) _ (2)

( 2) = /)(2) _1_ 1(p(2) _ p(2) )g. = ._ ( P'-I Pi,
. i-I I 2, I-I, 2 I

._p(2) .'. 3//2)
. '[-}, - 1 ,

i = 2, ... ,11, while 1'2) = pi2) on t <: t2 , and /121 = P~,2) on
particular, K(2) <:; 2.

The crucial step in Favard's argument is the proof that

tn -il . In

I[gi (3)

for some constk depending only on k and not on t (or fo). Once this is
accepted, it then follows that, for the final f,

Iljlk) II <' (1 --l-- 2 constk ) k' I[ ] r I
, oo~ i (k-l)! .mrxlti,... ,tiHJO'

since, on any given interval (t" tHI),jU,) = pj/') -+ (XiHgiH + ... + (Xitrgi+r

for some ;, and some r E [0, k - 1]. But, rather than elaborating Favard's
lapidary remarks in support of the bound (3), we prefer to discuss the
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following modification of Step 4 in Favard's construction: Let'\ be the linear
functional on [PI' which satisfies

r = 0, ... , k - I. (4)

Here, [Ph;: the space of polynomials of degree < k, considered as a
subspace of 1L1(I). There is, clearly, one and only one such linear functional
since the sequence «tH1 - ,y-l-r);:J is a basis for [Ph; . By the Hahn-Banach
Theorem, we can now choose gi E LU) ~ (1L1(I))* so that gi =.\ 'i
while II pgi ~~ .\p for all p E [P" . For such gi , hi as given by (I) satisfies (2),
while II h;") ,:; ! (Xi! II ,\ II·

lt remains to bound II ,\ II. For this, observe that, for all p E [P" ,

"-1
P =~ I (_)"-1-rp(k-l-rl(tH1 )(tj +l ~- .)l:-l-rj(k - I - r)!,

ro.O

hence (4) implies that

10··1

.\p = I (_.)"-l-rp("-l-,.)(tj+l)~Jir)(tj+]),
r.=.ooO

all p E [P" . (5)

From this, a bound for II .\ II = SUPlJEiP' I.\p ijI[ Ip I could be obtained much
as in the proof of the next section's le~ma.

3. SOME ESTIMATES FOR FAYARD'S CONSTANTS

There is no difficulty in considering the slightly more general case when
t = (t i K+7c is merely nondecreasing, coincidences in the t/s being interpreted
as repeated or osculatory interpolation in the usual way. Precisely, with t
nondecreasing and f sufficiently smooth, denote by

fit :=c U;)

the corresponding sequence given by the rule

with j: j(i): = max{m I ti _ Tn

Assuming that ran t c: [a, b] and that t i <': l i __\1. , all iJ It is defined for every f
in the Sobolev space
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Consider the problem of minimizing Ilpk ) lip over

F:= F(t, cx, k, p, [a, b]) :c= {IE 1L~)[a, b] [fit = cx}

109

for some given ex. F is certainly not empty; it is, e.g., well known that F
contains exactly one polynomial of degree < n + k. Hence

F = {fE IL(;) [a, b) II[t =folt},

for some fixed function fo E F. Favard already observes (without using the
term "spline," of course) that

inf II f(k) I == inf I gil
fEF I ,,'J) gEG 1< .p,

(6)

with

G := G(t, go, k, p, [a, b]): = {g E ILp[a, b] Ir Mi.1cCg - go) = 0, all i},
a

and

M;.k(t)jk! := [t; ,... , tirkK - t)~-lj(k - I)! (7)

a (polynomial) B-spline of order k having the knots Ii , ... , IWe • Equation (6)
follows from the observations (i) that, with Pdthe polynomial of degree < k
for which

and

/

' b

Vg := (. - S)~-lg(S) dsj(k - I)!,
• a

every fE !Li:')[a, b) can be written in exactly one way as

with Pl E IPk (necessarily equal to Pd) and g E ILp[a, b) (necessarily equal
to Pk»); and (ii) that

f[t=Iolt iff Pd=Pdo and [t;, ... ,t;--j-k](f-fo)=O, foralli.

It follows that

The following lemma is therefore relevant to bounding K(k).
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LEMMA. If t i < t i+/;, then, for every largest subinterval] := (tr, tr+l) of
(ti, ti+1,), there exists hi E with support in ] so that

p

for some constant Die depending only on k.

Proof By [1], the linear functional Ai given by the rule

AJ :c= L (-- )"--I--j<f;~\-I-j)(Ti)fj\Ti)'

J<.k

<fult) >c (tii-l t) '" (tiik-l - t)j(k l)!

satisfies

provided Ti E (ti , ti+7J Let

A :== X, "Ie'

with 7i the midpoint of I := a largest among the k intervals (ti' t i +1 ), ... ,

(tHle - 1 , tit-Ie), and [PIe: = the space of polynomials of degree < k considered
as a subspace of !Ll(!)' Then

III (tit/. ti)!k.

Also, by the Hahn-Banach theorem, there exists heLM) such that
111711,", = II A II and II hg == Ag for all g E [PI. • But then, since g II E IP'k for every
gin §k,t := span(Mu ,... , M n •I,), the function hi defined by

satisfies

I ( )
._ Ih(t)((tHk -- ti)jk),

7i t .- la,
tEl
t¢l

Jh,g = ((t iik - ti)jk) Aig, for all g E §k.t

Jt remains to show that Ii AI: Ddi 1 for some constant D;e depending only
on k. For this,
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hence, by choice of I, and of Ti in I, we have

! .f <7,-l-j)( .)[ <' (k - 1) I I'j
; yJl,k T z '-"0 . I •

.I

Also,

sup Ig(j)(Ti)1 If i g I = constj,l; (2;: II)H1,
gEe'k • J

with

1
>1

constj,,, := sup Ig(j)(O); J Ig(t)1 dt :s::; (k - l)j k(2k + 1)/2.
gE [J'k -1

Hence, the number

. (k - 1)D" :=I constj,i; 2H1 . :s::; k(2k + 1) (2k - 1)"-1
)< k .1

depends only on k, while

111

for all g E IP\. I I I

If now the numbers

j = 1, ... ,n,

are given, then

n

g := I cjh j

)"-01

satisfies

while

( Ali ,k g = Ci = r l'vfi,,,go,
, . i = 1, ... ,11,

II g :s::; mfx I Cj [II ~ r hj It,

But since at most k of the h/s can have any particular interval in their
support, it follows that

K(k) :s::; II I I hj I!I :s::; k 2(2k + 1) (2k - 1)1'-1,
J ' X!

(8)
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The construction of g is entirely local: On (t i , tiiI), g is the sum of all those
terms cjhj which have their support in that interval. For each such h j ,

(ti , t i+1) must be a largest interval of that form in (tj , t jTA), hence in particular
j E (i - k, i]; i.e.,

In terms of the original problem of findingfE (/e)[a, b] which agrees withfo
on t and has a "small" kth derivative, the above lemma has therefore the

COROLLARY. For given fo E 1L~~)[a, b] and given t (ti)~'I/e in [a, b],
nondecreasing with t j < tw , , all i, there existsf E IL~:) [a, b] such that f [t c= fo It
and,for all i,

Ilf(k) II </ D ' k 1 1[t· t· jj'
I CL,[ti,l iH ] '-'" "i-T<~~;i . J , ... , J+" 0

with Die' some constant depending only on k.

It seems likely that K(k) is much closer to its lower bound

(nI2)"-1 K(k) (9)

than to the rather fast growing upper bound (8). One obtains (9) with the aid
of Schoenberg's Euler spline [6]: With t, .··CC i, all i, the kth degree Euler spline

satisfies

hence

with

k! [[i, ... , i + k] Ole i 2",

In fact,

k
lim yd(nI2Y+l = 1/2.

W)

We claim that YIC:S:; K(k), which then implies (9). Suppose, by way
of contradiction, that Yk > K(k). Then there would exist, n CC~ 1,2,... ,
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in E l~)[I, k + n] so thatin(i) = (-)', i = 1,... , n -+ k, while

j (k) II < K(k)21e / Y 2k = Ii l!'(k) ·1'n 00 ~'" <.... Ie 1
0 k 100·

The function

._ F(k) j(k)
eno-(Jk ~ n'
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would then alternate in sign, changing sign only at the points i -+ (k -+ 1)/2,
and

while

for i = 1,... ,11.JMi.ken = 0,

But then, using the fact that the scalar multiple

of g k-l changes sign only at (i -+ (k -+ 1)/2), all i, we would have that

while also

(10)

a contradiction.
It is possible to compute better upper bounds for K(k), at least for small

values of k, simply by estimating the constant D k in the lemma above more
carefully, e.g., by computing explicitly a piecewise constant h (with appro
priately placed jumps) which represents an extension of A to all of ll(I).
To give an example, it is possible to show in this way that Da < 12, whereas
the estimate in the lemma merely gives Da < 525. These and other such
computations will be reported on elsewhere (c.f. remark at paper's end).

For k = 2, Yk = 2, hence K(2) ~ 2, therefore K(2) = 2, as we saw
already in Section 2 that K(2) ~ 2. This was already observed by Favard,
using a variant of the Euler spline.
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4. EXISTENCE OF JlI"Ji-ExTENSIONS

In this last section, we take advantage of the lemma just proved in the
preceding section to give a very simple proof of a theorem which extends and
unifies the three theorems in Section 3 of [4], In that paper, Golomb discusses
(among other things) the existence of jr,": (I')(!Rij for which! t ex
for given possibly biinfinite t with I; t; I ,all i, and a corresponding real
sequence ex.

Denote by

[I; '''', I, ;le,

the kth divided difference of any function g for which

with I j - l t;. While it is easy to see thatI/e [_~;')([R() implies

I (t;./, --- tJ i[t, "'" I;I/JI,}I 1'1_',

exwith It

Golomb proves the converse statement, viz that

Ii (({,+Ie .-- t,yl1 [ti ,.. " t;ld;,,), il'x implics the existence Of!E IL~~)(IR)
(11)

only in three special cases [4, Theorems 3.1, 3.2, 3.3] in which t satisfies some
some global mesh ratio restrictions, The lemma in the preceding section
allows to prove (II) without any restriction on t (other than that t i t; I,'

all i, which quite reasonably prevents values off(!') from being prescribed).
Tn view of the discussion in Section 3, (J I) is equivalent to the statement

Il((t,ll.; -- t;)l/ Ji [t; "", t; I I,']ex); IJi' x implies the existence ofg (' 1L1I(!Ri)

such that

JMi,,,g k ![t; ,... , I; dex, all i. (12)

For all i, let now hi be the L.o-function constructed for the lemma. Since h;
has support in some subinterval (tr , t r11) of (ti , t;k), no more than k of the
h/s are nonzero at any particular point. Hence, the sum

makes sense as a pointwise sum for arbitrary (c;). Sinc\:'

JhiMj.1. 6;,j,
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it follows that the function

g := k! I ([t, ,... , t'iIJex)h"

115

satisfies (12). It remains to bound g. For I p <::: CfJ,

(i+l 'II L c'jIlj I"
""li j

t; i.l' .- tj ) I'

ei DI'/~jf~
I /

Hence

·t .. t· l /I' 't t.I-1'!")I)
, c I I.J.±I~=--.i.) I_i±k - ..-..2) [) .1'

) \ k \ Idt, ! k

I.e"

Ii I e/lj
)

:0( k 7J - I Dk P I [Cj [J' (tH!, -- tJ/k,
I

and this holds for p

k' k1-1/I'D,. \I((£J.~I! -- ti)l/i' [to t· ,_IJ~)C). ~,k ) ,... , )

co, too, as one checks directly.

THEOREM. For given nondecreasing t (finite, infinite or biinfinite with
t; < t, +-k, all i, and given corresponding real sequence ex, and given p with
1 p-CfJ, there exists IE 1L~:I([i;g) such that I't =~ ex if and only if

I(((ticl,' - tJ/k)l/P[t j , ... , t i ,dot)j ['." < oc.
We note that the above argument (as well as the argument for (8)) is based

on the linear projector P: Li hi /''l[;.I, given on IL" by the rule

Pj":== L (J MiJJ) hi,

and shows this projector to satisfy

This implies the local bound

all f EO

I
. III t·. - t· )1/11

1
M. ,( ---'-.=!'-----'-- .

• ).k. k

(13)
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as well as the global bound PI kD Ic • The dual map for P, i.e., the linear
projector P*: Li Mi.!. hi on Lq (with lip',· I/q I) with range equal
to § Ie, t, is therefore also bounded by k D". In addition, direct application
of the Lemma in Section 3 gives the local bound

(14)

Note added ill proof The computations alluded to in Section 3 have been reported on
in [CO de Boor, A smooth and local interpolant with "small" k-th derivative, MRC TSR
#1466; to appear in "Numerical Solutions of Boundary Problems for Ordinary Differential
Equations," (A. K. Aziz, Ed.), Academic Press, New York, 1974], and show that K(k)
grows "initially" no faster than 2". The same reference contains a proof that K(k)
(k - I) 9k for all k.
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