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1. INTRODUCTION
In his pioneering paper [3], Favard considers the problem of minimizing
S over

Fi={fe P | f(t) = [t i = Loy n + K},
for a given f, and a given strictly increasing sequence t = (¢;)}**. Favard
solves this problem in a rather ingenious way which is detailed and elaborated
upon in [2]. Favard goes on to prove that, with

[t 0ees L] fo

denoting the kth divided difference of £, on the points ¢; ,..., ;. ,

inf{| /% . 1 £ U, f(1) = filt), all 1}
b max KU\t ..., tiddfo

3

K(k) := su
1

0.t

is finite, and that K(1) = 1, K(2) == 2. For k > 2, Favard gives no quanti-
tative information about K(k).

An estimate for the supremum under the additional restriction that only
uniform t be considered can be found in Jerome and Schumaker [5]. Their
argument was extended by Golomb [4] as far as it will go, viz., to include
nonuniform t’s whose global mesh ratio R, := max, A¢,;/min; 4¢, is bounded.

It is the purpose of the present paper to show how Favard’s argument
can be used to obtain upper bounds for K(k). Further, an upper bound for
K(k) is also obtained by a completely different method which, incidentally,
also provides a simple proof of a theorem concerning the existence of
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H* -extensions, thereby simplifying and cxtending three theorems of
Golomb [4]. A lower bound for K(k) is also given.

The author’s interest in the numbers K(k) was sparked by a question about
them from H.-O. Kreiss, who apparently was looking for a shortcut in
computing error bounds for a given finite difference approximation to the
solution of an ordinary differential equation. A bound on K(k) allows to
bound the Ath derivative (and therefore all lower derivatives) of some smooth
terpolant / to given data f().....f(r, ) in terms of the computable
absolutely biggest Ath divided difference without actually constructing and
then bounding such an interpolant and its derivatives.

2. FAVARD'S ARGUMENT

Favard’s argument consists in showing that, with p; the polynomial of
degree :=. k which agrees with f, at 7, ..., ;> a function fin F could be
constructed by blending p ..., p, together without increasing the ith
derivative too much. Because of some practical interest for small 4. we
describe Favard’s construction in some detail.

Favard’s Construction

Given k& -2, the strictly increasing sequence t == (£,)7°", and the
function f, .

Step |. For i 1., n form p,:. - the polynomial of degree . k

which agrees with f,at ¢, ... f,..,andsct [ - p, . i:=: 1. (1) =0,

Step 2. At this point, fis in LY, agrees with f, at ¢, ,....7, ., . and
agrees with p, on ¢ ™= f;y.q . If 7 = a, stop. Otherwise, increase i by | and
continue.

Step 3. Pickj: - ji)ysothatj - j(/ - Iyand {: = (¢;,1;.,)is alargest
among the A -1 intervals (4. f;q)sees (600t ) and set (1) @ =
(1)t

Step 4. On I, add to f the function

Bty = [ ) gds) dsiCk — 1)! ()

7

with
X rm= (e By = Wy et D fo



DERIVATIVES OF AN INTERPOLATING FUNCTION 107

and g, the piecewise constant function with jumps only at 7, + (r/k) 4¢; ,
o= 1,.., k — 1, for which

W) = adh ) (= (P — pe)(t20), 7= 0 kb — 1 (2)

Step 5. At this point, fU(t; ) = pi(t;,,), r==0,..,k —1. On
t > t;, , redefine f'to equal p,, and go to Step 2.

For k ==2, this construction is particularly simple since then, for
i=2..,n,

JE) =i, ) == (= 1) = 1),
and, in terms of the piecewise constant

(L, t; <<t < tpgp

gl(t) - 'R ’L 1/2 < f < fz'w] ’ fz‘—:] jg a7 (’IT oo ti+1)/2’

(1) and (2) become

o % (( AZU )2 o (At‘)) L :2 ( = ) = fltig) (= 0),

Azr] I él, R —- "b(l)(iﬁ 1) (,, Af)

Hence L = —1, R = 3, independently of i. Therefore, on (;, t.,4).

(2) — ~
D 1_[)? ’ P ST

M[""

()) () (‘) ()) s
7 — ) J %(pt pl ])gz l) ()
};L 1 I" 3 (RN 71;1/2 <1l {z'(rl H]

i==2..,n whie f@ =p® on t <r,, and f® =p® on ¢t > f,,. In
particular, K(2) <
The crucial step in Favard’s argument is the proof that

g Lo =2 const, 3)

for some const; depending only on 4 and not on t (or f;). Once this is
accepted, it then follows that, for the final 7,

const,,

NG ( iy B hfsibicnl 20 (k~ i )k max | Hesoeees tinzl fo 1,

since, on any given interval (#;, #;,,,), /) = p{* 4= oy @iq + 0 e inr
for some i, and some r [0, &k — 1]. But, rather than elaborating Favard’s
lapidary remarks in support of the bound (3), we prefer to discuss the
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following modification of Step 4 in Favard’s construction: Let A be the linear
functional on P, which satisfies

Mg — V5 — 1 — ) = 67 (t0), r=0,k—1. (4

Here, P, :-- the space of polynomials of degree < k, considered as a
subspace of 1,(1). There is, clearly, one and only one such linear functional
since the sequence ((f;,.; — *)*~*") "l is a basis for P, . By the Hahn~Banach
Theorem, we can now choose g, € L (/) =~ (L, (/)* so that | g;|l, = | Al
while [, pg, = Ap for all pe P, . For such g, , &, as given by (1) satisfies (2),
while || 2% [l ; << oy LA

It remains to bound || A{|. For this, observe that, for all p ¢ P,

k-1
p= X P ) (1 — P — = 1)L,
r==0

hence (4) implies that

B--1
=3 (= 0 ), all pePy. (5)

T=20)

From this, a bound for || A[] = sup,ep | Ap \/[11p | could be obtained much
as in the proof of the next section’s lemma.

3. SOME ESTIMATES FOR FAVARD’S CONSTANTS

There is no difficulty in considering the slightly more general case when
t = (¢,)7™" is merely nondecreasing, coincidences in the #,’s being interpreted
as repeated or osculatory interpolation in the usual way. Precisely, with t
nondecreasing and f sufficiently smooth, denote by

Sle==(f)
the corresponding sequence given by the rule
fir=f)  with j s (i) = max{m | t;, == 1.

Assuming that ran ¢ C [a, b] and that ¢, <Z 7, . all i, ], is defined for every f
in the Sobolev space B

Ly la, 8] = (/e C*Pla, 6] | £ *V abs. cont.; f Ve L, [a, b,
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Consider the problem of minimizing || f*) |, over
F:=F(t, « k, p, [a, b]) :-= {f€ L[a, b] | f|; = a}

for some given «. F is certainly not empty; it is, e.g., well known that F
contains exactly one polynomial of degree < n - k. Hence

F={fel®a, b]1fl=fue

for some fixed function f, € F. Favard already observes (without using the
term “‘spline,” of course) that

inf /@ 1, = infl gy, ©)
with
b
G := Glt, &, k, p, [a, b): = {g e Lyla, b1 | | Mixlg — g0) = O, all i},

. (%)
o= Jo »

and

MOk 2= [t s 1] — D7 — 1) ™

a (polynomial) B-spline of order & having the knots ¢, ,..., #;,;. . Equation (6)
follows from the observations (i) that, with P; fthe polynomial of degree < k
for which

(Pof) lapr = flapr s

and

Vei= [ (- — ) g(s) dsfik — 1),

every fe L\"[a, b] can be written in exactly one way as
S=p+0—=P) Vg

with p; € P, (necessarily equal to P, f) and g € L [a, b] (necessarily equal
to f™); and (ii) that

fle=foo Mt P f=Pfy and [t;,..., .1 (f —fo) = 0, foralli

Tt follows that

5 inf{liglle | f Mixg = [ M 180, alll}

Ky = sup, max | [ Moago |

The following lemma is therefore relevant to bounding K(k).
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Lemma. If t; << 1., then, for every largest subinterval 1 := (¢, ,1,,1) of
(1;, tisr), there exists h, € L, with support in I so that

J‘ hiMj = 0,50 il = Dillliwr —~ 1)K 100, beop e o,

Sfor some constant D, depending only on k.

Proof. By [1], the linear functional A; given by the rule
Af i 3 ()T ) V),
jak

biall) == (b — 1) = (g — DIk — 1!
satisfies
MM 5 == 85 k[t — 1),
provided =, & (1, , t;.1). Let

A=A, w, s

with 7; the midpoint of I :== a largest among the k intervals (¢;, 1,.9),...,
(tivr-1 > Lirn), and Py, :== the space of polynomials of degree < & considered
as a subspace of 1,(I). Then

:Il/\ zl/',)

Also, by the Hahn-Banach theorem, there exists /1¢ Lo(I) such that
| hll. = I Al and [, hg = Ag for all g € P,.. But then, since g |, € P, for every
ginS,, = span(M, ..., M, ), the function /4; defined by

sh(t)((mk ~1k), el

h(t) := Y
satisfies
J“ hig = (t;yn — t)JK) Ag,  forall geS,,
bhle << (e — 1)K EAT T,
It remains to show that || A} << D, /i I | for some constant D, depending only

on k. For this,

i ) ( - ]1), 1=ty =1,

JC{L.... k1) red

171=i
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hence, by choice of I, and of =; in I, we have

15 ik —1 ’
e < (T )

Also,

sup | g(r))| [[ g | = const; (2] 11y,
VT

gely
with

A1
const; ; 1= sup | g¥(0); /' Fe@)] dt < (k — 1) kQ2k + 1)/2.
v-1

gely

Hence, the number

Dy = Z const; , 271 (k7 1) < kQk 4+ 1) 2k — 1)1

Jok
depends only on &, while

Al =iNgl < D[ g1l forall gePy. ||
If now the numbers

= k' [r} seees t]'—I-k'] £o > ] = 17"‘5 n,

are given, then

g = Z thj

i1

satisfies

[ Mizg=c;i= | Mgy, i=lo,n,

while

lglo <maxle [T ih1]
PR N

But since at most k£ of the /4/s can have any particular interval in their
support, it follows that

K(k) <

R 1’ < k22K - 1) 2k — DL, ®)

i Bl
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The construction of g is entirely local: On (¢, , 1,.,), g is the sum of all those
terms c;i; which have their support in that interval. For each such 7,
(t;, t;,1) must be a largest interval of that form in (¢, , ¢,.,), hence in particular
jeli—k,il;ie.,

[ oty = KDL max | | Mg, .

In terms of the original problem of finding f e L{*'[a, b] which agrees with £,
ont and has a “small” kth derivative, the above lemma has therefore the

COROLLARY. For given fyel¥a, b and given t - - (1)i"* in [a, b],
nondecreasing with t; < t,.; , all i, there exists f € L [a, b] such that f |, = f; |,
and, for all i,

FE9 ot = D2 Jhax KUIE ey g fo
with D, some constant depending only on k.
It seems likely that K(k) is much closer to its lower bound
(/2= = K(k) 9

than to the rather fast growing upper bound (8). One obtains (9) with the aid
of Schoenberg’s Euler spline [6]: With ¢, —= i, all i, the kth degree Euler spline

Elt) =y z (=) M n(t + (k4 1D/2)

satisfies
&) = (—), all 7,
hence
KU \liyeoy i+ K] 64— 28,
with

yei= 1Y COEEER — @[S 1/@) - D = et

In fact,
lim o /(mr[2)F = 1]2.

We claim that vy, << K(k), which then implies (9). Suppose, by way
of contradiction, that vy, > K(k). Then there would exist, n == 1, 2,...,
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fne LS¥NL, k -+ n] so that f,(5)) = (=), i = 1,..., n -k, while
9 e < K02 < p2" =116 -
The function
(k) (k)

€y = Oy,

would then alternate in sign, changing sign only at the points i -+ (k -+ 1)/2,
and

ess-infle, | = (Kk) — v,) 2 >0,
while

J‘ Mi,]cen = O, for i= ],..., . (10)

But then, using the fact that the scalar multiple
gult) = Z (=) Myt + k[2)

of &,_, changes sign only at (i + (k -+ 1)/2), all i, we would have that

n+k
f €nlk
1

2 ess inf | €n [ “ 8x Hl,[l,n+k]

= i — (K(k)) 2¥(n + k) llgnlhtoaro>

7>

while also

l J:H-k €n8k

a contradiction.

It is possible to compute better upper bounds for K(k), at least for small
values of &, simply by estimating the constant D, in the lemma above more
carefully, e.g., by computing explicitly a piecewise constant / (with appro-
priately placed jumps) which represents an extension of A to all of L,(D).
To give an example, it is possible to show in this way that D; < 12, whereas
the estimate in the lemma merely gives D, << 525. These and other such
computations will be reported on elsewhere (c.f. remark at paper’s end).

For k = 2, y, = 2, hence K(2) >= 2, therefore K(2) = 2, as we saw
already in Section 2 that K(2) <{ 2. This was already observed by Favard,
using a variant of the Euler spline.

< 6P, 2% < o,

= }flwk €n Z (=) M

i#[1.7)
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4. EXISTENCE OF H* P-EXTENSIONS

In this last section, we take advantage of the lemma just proved in the
preceding section to give a very simple proof ot a theorem which extends and
unifies the three theorems in Section 3 of [4]. In that paper, Golomb discusses
(among other things) the existence of /& H*7 : - ['Y(R) for which /', - «
for given possibly biinfinite t with 7, - ¢, . . all #, and a corresponding real
sequence a.

Denote by
L7 SR A

the kth divided difference of any function g for which
g it ()
with #;_, < #; = £, . While it is easy to sec that /< LY(R) implies

Y (o~ 1) [t Lol o

Golomb proves the converse statement, viz that

(g — t)V2 [t 0y Gpd)i |, <2 0 imiplics the existence of fe ﬂ_(i"f)(R)
with /i, = a an
only in three special cases [4, Theorems 3.1, 3.2, 3.3] in which t satisfies some
some global mesh ratio restrictions. The lemma in the preceding section
allows to prove (11) without any restriction on t (other than that 7, = ¢, .,
all 7, which quite reasonably prevents values of /) from being prescribed).
In view of the discussion in Section 3, (11) is equivalent to the statement

W(tp — DY [t sy ti]e); ], - o implies the existence of g e L (R)
such that

[ Mioyg == KWty 1y e, all i, (12)

o

For all i, let now A, be the L_-function constructed for the lemma. Since /;
has support in some subinterval (¢, , 7,.,) of (¢, , #;.,), no more than k& of the
h;’s are nonzero at any particular point. Hence, the sum

z ol

z

makes sense as a pointwise sum for arbitrary (c;). Since

jhiM;i./u . (Si,j >
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it follows that the function

g = k! Z ([t; 5eees tis )ty

satisfies (12). It remains to bound g. For | - p <Z oo,

tii1 ’- P slivt [ PR r B
! =l o RN J
f | Z oy | =% J ( Z ¢; 1 D, Y
i Jj 1; SUpph,Cle,t; ] i)
= ( > o (tli_/i:_ tf)lf’“ (’fm-, — t_,-)l”‘"'”)" D
o J - I T k
sapph Clt;t; ] k kAt; )
< ( Z ‘ ¢ I,’:’iﬁ_i,') /‘71,411)/.,], ]
supph,Cle;,i,,41 k /
Hence
| ” ,
‘IZ ol <L kPLDP Z e 1P (e — 1)K
i n ;
ie..

L . Wf it — (AP
gl < kVKVrD, 5‘((47%) [£; 50 ’j-;—/;]l‘) i

“ilp

and this holds for p = o0, too, as one checks directly.

THEOREM. For given nondecreasing t (finite, infinite or biinfinite with
t; << tio., all i, and given corresponding real sequence o, and given p with
12 p 7 oo, there exists e L(R)Y such that [, == o if and only if
(e — )RV s 5 @) [ < o

We note that the above argument (as well as the argument for (8)) is based
on the linear projector P 1= 3" h, ) M, given on L, by the rule

Pf = Z (‘ AMJ',L:f) i, all fel,,

and shows this projector to satisfy

“~ » . AL/
N e B A

.supphjg[f,-.ti“]
This implies the local bound

! P.fllp,(ti,tiﬂ) < ka Hf“p,(f“]_k.t”.y‘,) (13)
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as well as the global bound |; P ::. kD, . The dual map for P, i.e., the linear
projector P* 1= 3, M, (9 h; on L, (with 1/p -+ 1/g = 1) with range equal
to S, , is therefore also bounded by kD, . In addition, direct application
of the Lemma in Section 3 gives the local bound

VP Doty = KDL Laityyn it - (14)

Note added in proof. The computations alluded to in Section 3 have been reported on
in [C. de Boor, A smooth and loca! interpolant with “small*” k-th derivative, MRC TSR
#1466, to appear in ““Numerical Solutions of Boundary Problems for Ordinary Differential
Equations,” (A. K. Aziz, Ed.), Academic Press, New York, 1974], and show that K(k)
grows “initially” no faster than 2%. The same reference contains a proof that K(k) -~
(k — 1) 9% for all k.
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